PLSQL Exercise Solutions
Patricia Ward ‘Database Management Systems’ 2nd edition

Cengage Learning/Middlesex University Press

Exercise 2 – PL/SQL triggers - solutions
1. Using triggers to maintain business rules
Suppose that the Middlesex Transport Authority (MTA) has a rule stating that a bus driver’s salary cannot be changed by more than 20% of the original salary. Create a trigger ‘salaryChangeMonitoring’ to enforces this constraint. The trigger fires whenever there is an update to the Busdriver table and outputs a suitable error message when the rule is violated.

In this case, we can define a trigger on the Busdriver table in the following way:

create or replace trigger salaryChangeMonitoring
before update on BusDriver

for each row

begin

if ((:new.bdSalary/:old.bdSalary) >= 1.2) or
((:old.bdSalary/:new.bdSalary) >= 1.2)

then

RAISE_APPLICATION_ERROR(-20002, 'Warning: Large percentage change in salary prohibited.');

end if;

end;

/

Example update on BusDriver giving Jane Brown an increase >20%:
Update BusDriver
set bdSalary = 3600

where bdName = 'Jane Brown';

Update BusDriver

 *

ERROR at line 1:
ORA-20002: Warning: Large percentage change in salary prohibited.
ORA-06512: at "PATRICIA.SALARYCHANGEMONITORING", line 5
ORA-04088: error during execution of trigger 'PATRICIA.SALARYCHANGEMONITORING'
2. Creating triggers to prevent updates and deletions
In the BusDrivers’ database, we can see that the rows in the Depot table are often referenced by many child rows in a number of other tables (e.g., Bus, Cleaner and BusDriver). Although there are FOREIGN KEY constraints declared on the child tables to maintain the referential integrity, we can still define a trigger in the parent table (i.e., Depot) to stop any attempt to change the name of the depot and/or to remove any of the depot rows. This is corresponding to the business rule stating that once a depot is established, it will be there ‘for ever’ and will not be allowed to change name (although unrealistic, we assume that such a rule is necessary).

Write appropriate PL/SQL statements to create the trigger. Note that the trigger you create is a statement level trigger so the ‘for each row ‘statement should not be used. After the trigger is created, try to change the name of some depots and delete a row from depot, and see what will happen.

The trigger we need is a statement-level trigger. The triggering events are UPDATE of DNAME and DELETE. The proper PL/SQL statements are as follows:

create or replace trigger DepotTrigger

before update of dName or delete on Depot
begin

RAISE_APPLICATION_ERROR (-20501, 'You are not allowed to change the value of depot name or delete a depot row');
end;

Trigger created.
Having created the trigger, if you try to perform an update operation on gname such as:
update Depot
set dName = 'Crouch End'
where dName = 'Hornsey';
The following error warns you that the operation is prohibited.

Update Depot

 *

ERROR at line 1:
ORA-20501: You are not allowed to change the value of depot name or delete a depot row
ORA-06512: at "PATRICIA.DEPOTTRIGGER", line 2
ORA-04088: error during execution of trigger 'PATRICIA.DEPOTTRIGGER'
3. Creating triggers to maintain data validity
A CHECK constraint is similar to a validation rule and is an option in the CREATE TABLE command whereby you can specify what data may be entered into a particular column. So if we wanted to add a constraint in an Cleaner table that salary must be within certain limits we could create the table thus:

create table Cleaner

(cNo

varchar2(5),

cName
varchar2(20),

cSalary
number(6,2),

dNo

varchar2(5),

constraint pk_clno primary key(cNo),

constraint fk_deno1 foreign key(dNo) references Depot(dNo),

check (cSalary >0 and cSalary <5000)
);

Here any salary that is less than zero and greater than 5000 will cause a violation of the constraint.

Applying the CHECK constraint, however, we would not know whether the salary is greater than 5000 or smaller than 0 (i.e., a negative number).

We can create a trigger instead of a CHECK constraint, which can tell us how the restriction on ‘cSalary’ is violated. Whenever the value of ‘cSalary’ is beyond the valid range (0 – 5000), the trigger will generate an error message informing users whether it is greater than 5000 or a negative number. (If a check constraint already exists it must be dropped first.)
Write PL/SQL statements to create the trigger, and use some SQL update and insert statements to test it.

The trigger we need is a row-level trigger. The triggering events are UPDATE of salary and INSERT. The proper PL/SQL statements are as follows:
create or replace trigger cleanerSalaryTrigger

before update of cSalary or insert on Cleaner
for each row

when((new.cSalary < 0) or (new.cSalary > 5000))

begin
if :new.cSalary < 0 then
RAISE_APPLICATION_ERROR(-20511, 'The salary cannot be negative.');

end if;

if :new.cSalary > 5000 then

RAISE_APPLICATION_ERROR(-20512, 'The salary cannot exceed 5000. ');

end if;

end;

Trigger created.
Having created the trigger, if you try to perform an update operation or insert a cleaner row with a salary not between 0 and 5000, an error occurs. For example, when executing
update Cleaner
set cSalary = 6000

where cNo = '114';

where cNo = '114'

 *

ERROR at line 3:
ORA-20512: The salary cannot exceed 5000.
ORA-06512: at "PATRICIA.CLEANERSALARYTRIGGER", line 6
ORA-04088: error during execution of trigger 'PATRICIA.CLEANERSALARYTRIGGER'
[image: image1.wmf]

[image: image1.wmf]